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Abstract Wetlands within tallgrass prairie are among the
most endangered ecosystems in North America and serve as
critical habitat for many sensitive and endemic species.
Although loss of these habitats has acutely affected reptiles
and amphibians, most prairie restoration initiatives take an
ecosystem restoration approach adapted for plant and/or game
species, with few focusing particularly on herpetofauna.
Limited information exists documenting the population re-
sponses of reptiles and amphibians to wetland restoration in
tallgrass prairie ecosystems. We used multiple techniques to
compare reptile and amphibian communities in recently
(2006) restored and unrestored tallgrass prairie and associated
wetland habitats at Woolsey Wet Prairie Sanctuary (WWPS), a
wetland mitigation site in Northwest Arkansas (USA). We
documented 24 reptile and amphibian species and found that
Regina grahamii (Graham’s Crayfish Snake) and Lithobates
areolatus (Crawfish Frog), both of which are considered spe-
cies of greatest conservation need in the state, showed prefer-
ential use of restored habitat, while common, widespread spe-
cies did not use restored or unrestored habitat preferentially.
Our results demonstrate that restoration of tallgrass prairie and
associated wetlands benefits rare and sensitive herpetofauna
and highlight two important management considerations: 1)
promoting ephemeral (fishless) hydrology, and 2) emphasiz-
ing terrestrial movement corridors and critical upland habitat.

< John D. Willson
jwillson@uark.edu

Department of Biological Sciences, Eastern Kentucky University,
Richmond, KY 40475, USA

Department of Biological Sciences, University of Arkansas,
Fayetteville, AR 72701, USA

Keywords Restoration - Prescribed fire - Amphibian -
Reptile - Lithobates areolatus - Regina grahamii

Introduction

Prairie and associated wetland ecosystems support a great di-
versity of taxa (Risser 1988; Euliss et al. 1999), including
many specialist species, and often contain high levels of en-
demism (Knopf 1996). In North America, these biodiverse
ecosystems have experienced widespread destruction due to
extirpation of native grazers, introduction of exotic vegetation,
conversion of land to agriculture, and fire suppression (Warner
1994; McLaughlin and Mineau 1995; Twidwell et al. 2013).
Prior to European colonization, approximately 162 million ha
of prairie existed throughout the Great Plains region (Samson
and Knopf 1994). However, North American tallgrass prairies
and associated wetlands are now the most imperiled ecosys-
tems world-wide (The Nature Conservancy 2016).

Wetlands are vital components of many grassland ecosys-
tems (Bolen et al. 1989; Eldridge 1990; Mushet et al. 2002;
Euliss et al. 2004). Hydrologic and thermal variation in wet-
lands generate heterogeneous soils (Richardson et al. 2001),
vegetative coenoclines (Seabloom et al. 1998), and diverse
habitat structure (Murkin et al. 1997), which promote biolog-
ical diversity (Weller 1982). However, the fertile, hydric soils
of prairie-associated wetlands make them desirable for crop or
livestock production. Conversion of these wetlands for agri-
cultural purposes results in alterations to the natural hydrology
(van der Kamp et al. 1999) and disruption of native plant
communities (Matson et al. 1997), often to the extreme of
creating irrigated monocultures (Liu et al. 2004). Pervasive
agricultural techniques explain why today, less than 50% of
historic wetlands remain world-wide (Dahl 1990).
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In the last century, efforts to restore degraded prairie and
associated wetlands have increased substantially in the Great
Plains region of the United Sates. The goal of prairie and
wetland restoration is often to restore ecological integrity to
degraded habitat and maximize ecosystem services (e.g.,
flood mitigation, nutrient sequestration, and wildlife
production; Zedler and Kercher 2005). In the context of prairie
and wetland restoration, landscapes must be liberated from the
structural uniformity typical of degraded prairie, and provided
with natural landscape features such as topographic relief,
seasonal inundation, and diverse vegetative structure and
composition (Biebighauser 2011). Restoration usually begins
with the removal of over-dominant or exotic plant species,
which is necessary for successful propagation of native prairie
grasses (Gould and Gorchov 2000), followed by prescribed
burning to limit ecological succession and encroachment of
woody vegetation (Gibson and Hulbert 1987).

Plants are often the focal taxa in the restoration of prairies
and their associated wetlands (Streever 1999), with animals
presumed to colonize from surrounding habitats thereafter
(Zedler 2000). This assumption may be flawed because resto-
ration efforts are often applied within fragmented landscapes
that have been isolated from remnant historical habitat
(Lehtinen et al. 1999; McCoy and Mushinsky 1999).
Critically fragmented landscapes may feature corridors which
allow passive transport of plant propagules (Damschen et al.
2008), but restrict or prevent colonization by animals with low
vagility or acute physiological sensitivity to environmental
conditions, such as amphibians and reptiles (Joly et al. 2003;
Scherer et al. 2012).

Amphibians and reptiles (herpetofauna) comprise a sub-
stantial component of vertebrate diversity and biomass in
prairie-associated wetland ecosystems (Iverson 1982;
Deutschman and Peterka 1988; Hecnar and M’Closkey
1997; Gibbons et al. 2006), but are currently experiencing
unprecedented population declines at a global scale (Alford
et al. 2001; Gibbons et al. 2000; Stuart et al. 2004). The cryp-
tic behavior and unpredictable activity patterns of reptiles and
amphibians generally confer low detectability (Durso et al.
2011; Willson et al. 2011); therefore, the population status or
even regional distribution of many species are still poorly
known (Todd et al. 2010). While some studies have examined
herpetofaunal communities in fire-maintained forests and
grasslands (e.g. Wilgers and Horne 2006; Perry et al. 2009),
less is known about their responses to restoration of tallgrass
prairie and associated wetlands.

Our objective was to compare herpetofaunal communities
of recently-restored remnant tallgrass prairie and associated
wetlands in Northwest Arkansas, USA, to those of neighbor-
ing unrestored habitats that are currently degraded by agricul-
ture and non-native vegetation cover. We hypothesized that: 1)
reptile and amphibian species richness and relative abundance
would be greater in restored habitats and 2) relative
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abundances in restored habitats would reflect stronger re-
sponses by species that, within our region, are generally asso-
ciated with remnant tallgrass prairie habitat and associated
wetlands, such as Regina grahamii (Graham’s Crayfish
Snake; Fowler 2015) and Lithobates areolatus (Crawfish
Frog; Parris and Redmer 2005).

Methods
Study Site

Woolsey Wet Prairie Sanctuary (Fig. 1) contains a 16.6-ha
mitigation site constructed to offset the permanent loss of
3.6 ha of adjacent wetlands associated with a wastewater sys-
tem improvement project within the Osage Prairie region
(Washington County, Arkansas, USA). This region is charac-
terized by the climatic (Brye et al. 2004), topographic (King
etal. 2002), and edaphic (Chapman and Horn 1967) transition
from the arid Great Plains region of Oklahoma and Kansas to
the humid-temperate, deciduous plateaus of the Ozark
Highlands in Arkansas and Missouri. Nearly all historic prai-
rie in this region has experienced moderate to severe degrada-
tion from agriculture and/or urbanization, but observable prai-
rie mound (Nebkha) microtypography suggests that much of
WWPS (restored and unrestored) has not been extensively
tilled in the past. Restoration of WWPS was designed to re-
store ecosystem features of native tallgrass prairie including
seasonal inundation and periodic drying. To achieve these
hydrologic modifications, earthen berms were constructed
and equipped with water control structures. Following wet-
land construction in 2006, selective herbicide treatments were
applied to control invasive plants and prescribed burns were
performed annually each spring. Vegetation in upland portions
of the site is dominated by weedy native species including
Panicum anceps, Tridens flavus, Andropogon virginicus,
Setaria parviflora, Solidago altissima, Eupatorium serotinum,
and Vernonia missurica, scattered with more conservative
prairie species such as Baptisia alba, Helianthus mollis,
Penstemon digitalis, Pycnanthemum pilosum, P. tenuifolium,
Asclepias hirtella, A. viridis, Orbexilum pedunculatum, and
Rosa carolina. Swales and lower areas are dominated by a
diverse assemblage of sedges (Carex spp., Cyperus spp.,
Eleocharis spp., Scirpus spp., and Rhynchospora spp.) and
rushes (Juncus spp.), mixed with Andropogon hirsutior,
Tridens strictus, Paspalum floridanum, several forbs includ-
ing Eupatorium perfoliatum, Boltonia asteroids, B. diffusa,
Persicaria spp., and several woody species including
Cephalanthus occidentalis, Salix nigra, and Fraxinus
pennsylvanica.

Restored units within WWPS (“West and Center Unit” and
“East Unit”) are comprised of a mix of seasonal depressional
wetlands and upland grasslands, resulting in a gradient of
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Fig. 1 Aerial photograph of
study site: Woolsey Wet Prairie
Sanctuary (WWPS), Northwest
Arkansas, USA. Restored prairie
units (West and Center, and East
Unit) are contained within solid
lines and unrestored units (West,
North, and Savanna Unit) are
contained within dashed lines.
Habitat regions bordered by roads
are denoted with doubled solid
and dashed lines. Unit names are
denoted in bold typeface, and sub-
units or aquatic habitats are
denoted in non-bold typeface
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wetland size and permanence (Fig. 1). Most wetland areas are
seasonal and all dry during extreme droughts; no fish were
detected in any wetlands at the site during the study period.
The vegetative coenocline reflects patterns in soil moisture
from dry, upland soils, to transitional, seasonally saturated soils
at the wetland-upland interface. Isolated Salix spp. (Willow)
stands exist in wetlands with comparatively long hydroperiods
and the site is bordered by deciduous forest on its southern
boundary (Fig. 1). Natural upland habitat features are sparse
throughout WWPS, with little downed woody debris or rock.
Unrestored units of WWPS (“North Unit,” “Savannah Unit,”
and “West Unit”; 33.8 ha) that surround the restoration zone
are primarily maintained as hay fields dominated by non-
native Lolium arundinaceum (Tall Fescue) and represent areas
slated for future restoration. In the North Unit and southern
portions of the West Unit, microtopographic variation (prairie
mounds) is reduced (Fig. 1), likely due to shifts in soil compo-
sition and possibly historic tilling. Five discrete fishless artifi-
cial farm ponds with relatively long (semi-permanent)
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hydroperiods are found in the unrestored regions (Fig. 1).
Emergent vegetation is limited in the North and South Pond
and is dominated by Typha sp. (Cattail) in the West Pond.
Given the small size of our study area, we recognize that
movement of animals among wetlands or habitat units was
possible (and was likely for some species). Likewise, the limit-
ed number of replicated sites (wetlands or units) within each
habitat category precluded a formal analysis to quantify detec-
tion and occupancy probabilities (MacKenzie and Royle 2005).
Thus, recognizing that species detection probability was imper-
fect (<1), we caution that non-detections do not imply species
absence (Pellet and Schmidt 2005), and focus our analyses
instead on relative abundance (see below) as an indicator of
habitat use, rather than focusing primarily on species richness.

Reptile and Amphibian Sampling

Anuran Call Surveys We conducted anuran call surveys at
four restored wetlands (E2, E4/E5 [combined due to
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proximity], Regina Pond, and W1; Fig. 1) and five unrestored
wetlands (North Pond, Barn Pond, Savanna Pond, Cattail Pond,
and South Pond; Fig. 1) once per week from early spring (15
March) to mid-summer (10 July) 2014. To maximize detectabil-
ity and ensure uniform survey conditions, we conducted call
surveys between 2100 and 2400 h (Williams et al. 2012b;
Williams et al. 2013) on nights with weather conducive for am-
phibian breeding activity (mild temperatures, high humidity, and
low wind-speed), and if possible, following rain events. For each
survey, 1-2 observers listened independently for 5 min at each
wetland unit, recording all species heard. Maximum calling in-
tensity over the 5 min period for each anuran species was ranked
based on a numeric call index defined by the North American
Amphibian Monitoring Program (0 = silent, no audible calls; 1 =
individuals can be counted, there is space between calls; 2 = calls
of individuals can be distinguished, but there is some overlapping
of calls; 3 =full chorus, calls are constant, continuous and over-
lapping; Weir and Mossman 2005). At the end of the 5 min
survey, the observers conferred and determined a consensus call
intensity for each species; given the broad categories used, there
was seldom disagreement between observers.

Aquatic Trapping We used commercially available plastic
minnow-traps (Gator Buckets; model: 700) to passively assess
the occurrence of aquatic reptiles and amphibians within wet-
lands (Keck 1994; Willson et al. 2008). To compare relative
abundances of aquatic snakes and larval amphibians among
restored and unrestored wetlands, we performed systematic
trapping one week each month between March and
June 2014, with ten traps set in each of 11 wetlands (restored:
E2, E4, ES, Center, Regina Pond, and W1; unrestored: North
Pond, Barn Pond, Savanna Pond, Cattail Pond, and South
Pond; Fig. 1). Crayfish were also captured using this tech-
nique, and were counted along with aquatic snakes and larval
amphibians. Traps were spaced approximately 2 m apart and
partially submerged in shallow vegetated habitats, with 5-6 cm
of headspace inside the trap to ensure animals had access to air.
We checked all traps daily, and identified, counted, and imme-
diately released amphibians during the first 2-3 days each
month (larval amphibians and small crayfish captured after this
period were retained in the traps to serve as bait for snakes). We
identified all adult anurans to species; however, because
L. areolatus and L. sphenocephalus are nearly indistinguish-
able in the field (Trauth et al. 2004), Lithobates larvae (which
accounted for >90% of minnow trap captures) were only iden-
tified to genus. Once captured, we transported all snakes to the
laboratory to measure their mass and body length. We then
marked snakes individually using a disposable medical cautery
unit (Winne et al. 2006), and returned them to their approxi-
mate capture location within seven days. Although wetlands
began to dry after June, trapping was continued later in the
summer to assess seasonal activity of aquatic species. In July,
four of the original 11 semi-permanent wetlands held water
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and were trapped (restored: Regina Pond, E4; unrestored:
Barn Pond, Savanna Pond), for a total of 700 trap-nights, with
equal effort in restored and unrestored habitats. In September
and October, Barn Pond dried; therefore, we trapped the three
remaining wetlands for a total of 684 trap-nights.

Time-Constrained, Visual Encounter & Coverboard
Surveys We performed time-constrained visual encounter sur-
veys (VES) weekly from 18 February 2014 to 25 June 2014.
The entire site was divided into five units (restored: East and
West/Center [combined due to size and proximity]; unrestored:
North, Savannah, and West; Fig. 1). During VES, each unit was
surveyed for 30 min by 1-10 observers, with equal effort per unit.
Observers opportunistically searched visually under natural cover
for reptiles and amphibians. Particular emphasis was placed on
terrestrial habitats, because these were underrepresented by other
methods. We deployed plywood coverboards (1.5 cm X 70 cm X
80 c¢cm) on 11 March 2014 to serve as artificial cover objects
(restored: N =35; unrestored: N=35; Grant et al. 1992; Willson
and Gibbons 2009) and check during VES surveys. Additionally,
we performed weekly coverboard checks from 4 July to 6
November. We conducted visual surveys and coverboard checks
at mid-day in spring and fall, and at night during the summer.

Analyses

We compared use of restored and unrestored habitats using rela-
tive abundance indices (i.e., counts standardized for effort, or
anuran call indices). These methods may not detect all individuals
(i.e., detection probabilities are <1); thus, counts may underesti-
mate true abundance (Schmidt and Pellet 2010). A key assump-
tion when using counts as indices of abundance is that detection
probabilities are similar among statistical units. Without empirical
detection probability estimates (Schmidt 2003), we attempted to
minimize variation in detection probability due to observer bias,
environmental conditions, and sampling effort. Specifically, we
conducted each anuran call survey during a short temporal win-
dow (<2 h; ensuring similar environmental conditions) with the
same observers, trapped all sites simultaneously (ensuring similar
environmental conditions), standardized minnow trap counts for
effort, and marked snakes to avoid re-counting individuals.
However future efforts to rigorously compare abundance or pop-
ulation size among habitats would benefit from a mark-recapture
framework incorporating estimates of individual detection prob-
ability in abundance estimation.

Anuran Calls To compare anuran call intensity among wet-
lands, we only considered calls recorded during peak breeding
season for each species. We categorized species by breeding
seasons based on temporal call modalities; early spring
breeders (15 March — 8 April): L. areolatus (Crawfish Frog),
Pseudacris crucifer (Spring Peeper), Pseudacris fouquettei
(Cajun Chorus Frog), Lithobates sphenocephalus (Southern
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Leopard Frog), Anaxyrus americanus (American Toad); late
spring breeders (20 April — 5 June): Hyla versicolor (Gray
Treefrog), Acris blanchardi (Blanchard’s Cricket Frog); sum-
mer breeders (11 June — 10 July): Lithobates catesbeianus
(American Bullfrog). Gastrophryne carolinensis (Eastern
Narrowmouth Toad) were sparsely recorded, and thus were
not included in the analysis. For each species, we compared
mean intensities among restored (N =4) and unrestored (N =
5) wetland units using #-tests, with wetland as the statistical
unit and o =0.05. Because of violations of assumptions of
normality and/or homoscedasticity, we analyzed data for
L. areolatus, L. catesbeianus, P. crucifer, P. fouquettei, and
A. americanus using Mann-Whitney U tests.

Aquatic Trapping To compare relative abundances of larval
Lithobates sp. and crayfish among wetland types, we restricted
analyses to the first 2-3 days (when all trap contents were count-
ed and emptied daily) of each monthly trapping period between
March and June (when equal effort was used at restored and
unrestored wetlands). We standardized captures for effort by di-
viding daily capture totals by the number of traps deployed.
Standardized counts (captures per trap-night) were then averaged
within each wetland and compared among restored (N=6) and
unrestored (N =5) wetland units. Because of unequal variances
between tadpole abundance and non-normal distribution of cray-
fish in restored wetlands, we used Mann-Whitney U tests to
compare these groups and a #-test to compare A. fexanum larvae,
with wetland as the statistical unit and oc=0.05. We summed
snake captures over the March — June trapping period and ex-
cluded recaptures of individuals within wetlands to avoid con-
founding assessments of aquatic snake relative abundances by
differences in recapture probability among habitats. We com-
pared total numbers of individual R. grahamii and Nerodia
erythrogaster (Plain-bellied Watersnake) captured per wetland
among restored (N=6) and unrestored (N=25) wetland units
using #tests. Other snake species were not captured frequently
enough in aquatic traps to warrant statistical comparisons. We
performed all analyses in the R statistical programming environ-
ment (v. 3.4.1; R Core Team 2017).

Time-Constrained, Visual Encounter & Coverboard
Surveys We compiled the total captures of snakes from system-
atic visual encounter and coverboard surveys. Although low
numbers of captures precluded statistical evaluation of these pat-
terns, we cautiously interpret differences in total captures, given
that sampling effort was equal in restored and unrestored units.

Results

We observed a total of 24 amphibian and reptile species during
this study (nine anurans, one salamander, three turtles, one lizard,
ten snakes); 21 and 24 species were detected in the restored and

unrestored section, respectively (Table 1). Visual Encounter
Surveys detected the greatest number of species (N =20) and
documented several species not detected using other methods:
Plestiodon fasciatus (Common Five-lined Skink), Chelydra
serpentina (Common Snapping Turtle), Trachemys scripta
(Red-eared Slider), and Terrapene carolina (Eastern Box
Turtle). Aquatic trapping yielded the greatest number of captures
of all methods, particularly for amphibian larvae (N =134
A. texanum and N = 14,154 Ranid tadpoles) and aquatic snakes.
Coverboards were the most effective method for detecting terres-
trial snakes (Table 1), especially Thamnophis proximus (Western
Ribbonsnake). Auditory Call Surveys detected all anuran species
recorded during the study, including one species, Anaxyrus
americanus, which was not detected by other methods.

Anurans

During anuran call surveys, H. versicolor, A. blanchardi, P.
crucifer, P. fouquettei, and L. sphenocephalus were detected at
all wetlands, regardless of restoration status, while the remain-
ing anuran species were detected at only a subset of the wet-
lands. Anaxyrus americanus used three of four restored and
four of five unrestored wetlands. Gastrophryne carolinensis
were detected only in four of five unrestored wetlands (al-
though G. carolinensis were detected in restored wetlands
with coverboards and minnow traps; Table 1). Lithobates
areolatus used all restored and two of five unrestored wet-
lands, while L. catesbeianus used one of four restored and
one of five unrestored wetlands. The mean number of anuran
species detected did not differ substantially among restored
and unrestored wetlands (restored = 7.0, unrestored = 7.2).
The largest difference in calling intensity was seen in
L. areolatus, which had an eight-fold higher mean calling
intensity in restored wetlands than in unrestored wetlands
(Mann-Whitney U test, U; ;=19.5, p=0.024; Fig. 2).
Pseudacris fouquettei also exhibited significantly greater call
intensity in restored wetlands (U; =20, p=0.016).
Conversely, P. crucifer tended to have greater call intensities
in unrestored areas (U, 7 =2, p = 0.062). Calling intensities of
A. americanus, L. sphenocephalus, H.versicolor,
A. blanchardi, and L. catesbeianus did not differ significantly
between restored and unrestored wetlands (all p > 0.05).

Aquatic Trapping

Aquatic traps yielded a total of 301 snake captures of 111
individual R. grahamii and 39 individual N. erythrogaster.
Nerodia sipedon and T. proximus were seldom captured in
traps (N =8 and 5 individuals, respectively). Excluding recap-
tures, relative abundance of R. grahamii was almost five-fold
greater in restored wetlands than in unrestored wetlands (#-
test, t=-2.59, d.f. = 5.68, p =0.044), but relative abundance
of N. erythrogaster did not vary significantly between habitats
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(t=0.67,d.f. =5.66 p=0.528; Fig. 3). Aquatic traps were also
effective for sampling other wetland species, capturing a total
of 134 A. texanum larvae, 8695 crayfish, and 14,154 Ranid
tadpoles over 1090 trap-nights. Ranid tadpoles were found to
have greater relative abundance in restored wetlands (Mann-
Whitney U test, U, o= 1, p=0.009; Fig. 4), whereas captures
of A. texanum and crayfish were not significantly different
among wetland types (crayfish: U, =13, p=0.78;
A. texanum: t-test, t=1.12, d.f. = 5.03, p=0.312).

351
[J= Unrestored
30

[ = Restored
25+
20+

154

101

Mean individuals per wetland

Nerodia erythrogaster Regina grahamii

Fig. 3 Mean number of individual N. erythrogaster and R. grahamii
captured in aquatic minnow-traps in restored (N=6) and unrestored
(N=15) prairie wetlands at Woolsey Wet Prairie Sanctuary, Arkansas,
USA. Bars represent mean (+SD) number of individual snakes captured
per wetland during March — June, when equal effort was used in restored
and degraded habitats. Asterisks indicate statistical significance (p <0.05)
using wetland as the statistical unit

Time-Constrained, Visual Encounter & Coverboard
Surveys

We detected 22 species using a combination of coverboards and
time-constrained visual surveys. Coverboard surveys were es-
pecially effective for detecting terrestrial snakes, such as
Pantherophis obsoletus (Western Ratsnake), Coluber
constrictor (North American Racer), Lampropeltis calligaster
(Yellow-bellied Kingsnake), Thamnophis sirtalis (Eastern
Gartersnake), and 7. proximus (Fig. 5; Table 1), but were not
effective at detecting the highly aquatic R. grahamii, compared
to other techniques (e.g. minnow traps).

Among snake species with >20 detections under
coverboards, 7. sirtalis exhibited greater captures in degraded
units, whereas 7. proximus was captured in nearly equal num-
bers among habitats. Other species were infrequently encoun-
tered under coverboards, but most were captured slightly more
frequently in unrestored habitats, the exception being
P obsoletus, which was only captured in unrestored units
(Fig. 5; Table 1). While only captured incidentally during
VES, C. serpentina, T. scripta, and T carolina were encoun-
tered most frequently in restored units (Table 1).

Discussion
Our surveys of restored and unrestored remnant tallgrass prairie
and associated wetlands at WWPS revealed high overall diver-

sity and abundance of reptiles and amphibians, with documen-
tation of most expected species that are not exclusive to heavily
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Fig. 4 Crayfish, tadpole, and
larval Ambystoma texanum
capture rates in aquatic traps set in
restored (N = 6) and unrestored
(N =5) prairie wetlands at
Woolsey Wet Prairie, Arkansas
Sanctuary, USA. Bars represent
mean (£SD) captures,
standardized for trapping effort

-
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forested, high-elevation, rocky, or stream habitats (Trauth et al.
2004). Species richness was similar among restored and unre-
stored habitats. Herpetofauna considered regionally uncommon
and of conservation concern, such as L. areolatus and
R. grahamii, showed preferential use of restored habitats.
More common and widespread species like N. erythrogaster,
H. versicolor, L. catesbeianus, and L. sphenocephalus were
not found to use restored and unrestored habitats differentially.
Proximity to extensive upland habitats and perhaps lagged
population-level responses to restoration may explain higher
relative abundances of terrestrial snakes and salamanders in un-
restored units. Our findings demonstrate that species of conser-
vation concern (R. grahamii and L. areolatus) may respond
positively to tallgrass prairie and wetland ecosystem restoration
and highlight important considerations when managing these
habitats for conservation of herpetofauna. However, future stud-
ies should test the generality of our findings across larger special
scales using rigorous analysis of species’ patch occupancy dy-
namics, species richness, and population sizes in tallgrass prairie
and associated wetlands. Such approaches require sufficient

Fig. 5 Total snake captures 60 -
during time-constrained visual n
encounter surveys and o
standardized coverboard surveys, B 50 -
February — November, 2014 in o
restored and unrestored habitat at 8 40
Woolsey Wet Prairie Sanctuary, o
Arkansas, USA. Approximately %)
equal effort was deployed in - 301
degraded and restored units g
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w

>
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Crayfish

Tadpoles A. texanum larvae

sample sizes and field and analytical methods that allow for
quantification of species and individual detection probabilities
(MacKenzie and Royle 2005; Schmidt and Pellet 2010).

Amphibians

Our study suggests that WWPS provides suitable habitat for
L. areolatus. Lithobates areolatus were found in both restored
and unrestored habitats, but were detected at a higher propor-
tion of restored wetlands. Furthermore, L. areolatus calling in-
tensity was greater in restored wetlands, suggesting that
L. areolatus may breed preferentially in the restored wetlands.
Although we were unable to differentiate between larval
L. sphenocephalus and L. areolatus, greater relative abun-
dances of Lithobates larvae in restored wetlands were also con-
sistent with this conclusion. Preferential use of restored habitats
was more apparent for L. areolatus than for P. fouquettei,
L. sphenocephalus, and other syntopic anurans. These results
suggest that restoration may be a viable conservation tool for
L. areolatus, one of the most rapidly-declining North American
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anurans (Lannoo et al. 2009; Engbrecht and Lannoo 2010;
Engbrecht et al. 2012). Their pattern of decline is thought to
be driven—at least initially—by wide-spread habitat loss and
degradation, particularly the loss of wetlands due to drainage
(Parris and Redmer 2005). Therefore, the presence of a breed-
ing population of L. areolatus in Northwest Arkansas, where
wetlands within tallgrass prairie habitat are rare, highlights the
importance of habitat provided by WWPS.

Although suitable (fishless) aquatic breeding habitat is
critical for L. areolatus, adults spend surprisingly little
time in these habitats. Heemeyer et al. (2012) found that
L. areolatus occupy upland habitats up to 1020 m from
aquatic habitat for an average of 10.5 consecutive months
per year. Therefore, upland habitat quality may be equally
important for explaining observations of wetland usage by
L. areolatus. Lithobates areolatus are philopatric crayfish
burrow obligates, and upland habitat use during the non-
breeding season reflects presence of crayfish burrows
(which occur throughout the landscape) as core require-
ments for refuge from predators, foraging, aestivation,
brumation, and access to groundwater (Hoffman et al.
2010; Engbrecht et al. 2012; Heemeyer et al. 2012).
Reliance on both upland habitats with crayfish burrows
and fishless wetlands for breeding has severely restricted
the distribution of L. areolatus because increasing portions
of their range are being subjected to agricultural and rec-
reational practices (e.g. plowing, tilling, and wetland drain-
age; reservoir creation and wide-spread stocking of preda-
tory fish; Parris and Redmer 2005) that degrade these hab-
itats. Persistence of L. areolatus is likely predicated upon
suitable hydroperiod provided by a matrix of depressional
wetlands, availability of upland burrow habitats created by
burrowing crayfish, and movement corridors between
these habitats (Williams et al. 2012a; Engbrecht et al.
2013). Although it is clear that the restored wetlands at
WWPS serve as important breeding habitat for
L. areolatus, the extent to which adults migrate out of the
sanctuary to access nearby upland habitats remains un-
known. However, surveys during breeding events revealed
>20 individuals crossing roads as they migrated into
WWPS from adjacent private land, especially hayfields
east of the sanctuary (Fig. 1). Thus, road mortality and
development of adjacent land could negatively affect
L. areolatus populations that breed within the sanctuary.

Interestingly, A. texanum, which are generally absent from
the Ozark Plateaus and are typically associated with prairie
habitats in Northwest Arkansas (Trauth et al. 2004; pers.
obs.), were found in both habitat types with similar relative
abundances. This pattern may simply reflect more generalist
habitat preferences than were previously recognized for
A. texanum in this region (Petranka 1998). Alternatively,
A. texanum may require a longer time to respond to restoration
activity than anurans.

Reptiles

Regina grahamii clearly exhibited a greater preference for re-
stored habitat than syntopic aquatic and semiaquatic snakes.
‘While mechanisms for this phenomenon are not known, we sug-
gest features of the restored wetlands such as variable hydrology,
vegetative structure, and abundance of crayfish burrows are im-
plicated. Regina grahamii are dietary specialists, feeding almost
exclusively on freshly molted crayfish (Mushinsky and Hebrard
1977) and exhibit a strong association with crayfish burrows,
which they use as refuge from predators and as seasonal hiber-
nacula (Gibbons and Dorcas 2004). Although crayfish relative
abundance within the aquatic habitat was not significantly higher
in restored sections, burrows in the unrestored units may be dis-
turbed or destroyed during agricultural activities (mowing).
Regina grahamii are known from only a few historic records in
Northwest Arkansas (Conant and Collins 1998; Trauth et al.
2004), and this study has documented the first observations of
this species in the region in nearly 60 years (Dowling 1957;
Trauth et al. 2004). Despite the lack of records of R. grahamii
in Northwest Arkansas, a relatively robust population apparently
exists at WWPS (168 individuals captured in 2014). However,
because R. grahamii are highly aquatic and extremely secretive, it
is unclear if this population is truly disjunct, or belongs to a larger,
previously undetected population extending westward into
Oklahoma, USA. Although WWPS apparently provides excel-
lent habitat, R. grahamii is considered a species of greatest con-
servation need in the state. Because this population of R. grahamii
is likely isolated from surrounding populations, its persistence
should be considered in future land management decisions.
Relative abundances of N. erythrogaster and T. proximus,
which are semi-aquatic generalists, were similar in restored
and degraded habitat. Nerodia erythrogaster was the most
commonly encountered reptile in this study. It was captured
in every wetland, as well as in a stream (Owl Creek) in the
North Unit (Fig. 1; Table 1). Most terrestrial snake species
occurred in somewhat greater relative abundances in the unre-
stored habitat. In the restored area, 1. sirtalis, L. calligaster,
Lampropeltis holbrooki (Speckled Kingsnake), and
C. constrictor were captured infrequently in upland patches,
while P. obsoletus was not detected at all. Thus, despite the
suitability of the restored habitat at WWPS for aquatic snake
species, species richness and abundance of terrestrial snake
species and lizards may be higher in unrestored units that are
in closer proximity to extensive dry uplands. This phenomenon
highlights the importance of considering upland habitat in
future restoration activities at the site. Alternatively, as
posited for A. fexanum, terrestrial reptiles could be
experiencing a delayed response to the restoration. Bateman
et al. (2008) monitored lizard communities in the Middle Rio
Grande for 7 years following the experimental removal of non-
native plants and found that some species only began to show
substantial population responses in the final year, likely due to
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high year-to-year variation in precipitation. Continued moni-
toring of reptile communities at WWPS will address lags in
response to ecosystem restoration and the degree to which
species are limited by upland habitat availability.

Conclusions

This study has shown that active management of WWPS, in-
cluding the use of prescribed fire, creation of ephemeral wet-
lands, and revival of relict vegetative communities, can benefit
herpetofaunal communities and promote the persistence of two
regionally uncommon species: L. areolatus and R. grahamii. We
offer two recommendations to maximize the value of this site for
conservation of rare and sensitive herpetofauna. First, restricting
fish from colonizing wetlands is imperative. Presence of preda-
tory fish, especially centrarchids (Herwig et al. 2013), in the
wetlands could decimate larval amphibian and crayfish popula-
tions (Hecnar and M’Closkey 1997), and wetlands with perma-
nent to semi-permanent hydrology are at greatest risk of devel-
oping fish populations via surface water flow or animal-
mediated egg deposition (Snodgrass et al. 1996). Additionally,
increasing the extent of protected, high quality upland habitat
would be highly beneficial for herpetofauna at WWPS, and
should be a high priority in future management activities.

Based on our research, WWPS appears to currently provide
habitat that supports a rich community of herpetofauna.
However, it is uncertain if this diversity is secure, given the small
(16.6 ha.) size of the protected area, the sprawling development
in this rapidly-growing region (Knutson et al. 1999), and the
erosion of diversity expected with decreasing patch size
(MacArthur and Wilson 1967). Our results also demonstrate that
former prairie habitats degraded by human activity may support
species of conservation concern, along with more common and
widespread species (Mushet et al. 2012, but see Knutson et al.
2004). Thus, lightly degraded prairie habitats (e.g., hayfields and
lightly grazed cattle pastures) may be important for maintaining
relict populations, promoting connectivity among fragmented
higher-quality habitat patches, and should be targets for future
restoration (Lannoo et al. 2017; Stiles et al. 2017). It is currently
unknown if prairies that have undergone other forms of habitat
alteration, such as urban or residential development, are capable
of supporting relict populations. Therefore, continued research
and development of management plans for L. areolatus and
R. grahamii at WWPS is warranted.
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